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Abstract
Exact solutions for the bound and scattering states of the spatially one-
dimensional Duffin–Kemmer–Petiau equation for an asymmetric Hulthen
potential are obtained in terms of the hypergeometric functions. These solutions
are used to derive conditions for the existence of the transmission resonances.
From this investigation, we show how the transmission coefficient depends on
the energy of the particle and the strength of the potential barrier.

PACS numbers: 03.65.Nk., 03.65.Pm, 03.65.Ge

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Finding the solutions of the Schrödinger equation for various external potentials and discussing
the bound and scattering states of the system is a fundamental problem of the non-relativistic
quantum mechanics [1]. The low-energy limits of the bound and scattering states introduce
interesting results; the potential supports a half-bound state (or zero-energy resonance) [2–4].
Reflection and transmission coefficients are calculated to be 1 and 0 in this limit, respectively.
In non-relativistic scattering, if the external potential supports a bound state for the low
momentum limit, then a half-bound state occurs and transmission resonances appear. In
that case, the reflection coefficient vanishes and the transmission coefficient becomes unity.
Bohm called such cases ‘transmission resonances’ and recognized that the condition for the
existence of the transmission resonance was the same as the condition for a bound state energy
eigenvalue [5].

Recently, Kennedy et al have generalized these phenomena to the relativistic case and
showed that the transmission resonances appearing for Dirac particles scattered by a potential
barrier have been related to the bound states for the corresponding potential well in the zero-
momentum limit [6–8]. Thereby, their pioneering work on determining the transmission
resonances in the low-momentum limit for a potential barrier in the Dirac equation has been
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extended to the spin-0 particles. The Klein–Gordon (for relativistic spin-0 particles) and
Dirac (for relativistic spin-1/2 particles) equations are the most studied ones. These equations
have been solved exactly for some symmetric and asymmetric potentials and the existence of
the transmission resonances and supercritical states for these potentials have been discussed
[9–14]. Among the studied symmetric potentials, Kennedy has solved the Dirac equation
for Wood–Saxon potential barrier [8] and examined the transmission resonances in the low-
momentum limit. He has shown that this potential barrier supports a half bound state at
E = −m. After this study, Villalba et al have handled the transmission resonance phenomena
in detail and investigated the transmission resonances for both scalar bosons and fermions for
some external potentials [9–12].

Another important relativistic equation is the Duffin–Kemmer–Petiau (DKP), which
describes both the massive scalar and vector bosons. Its covariant form resembles the Dirac
equation with matrices satisfying the DKP algebra. Recently, a great deal of interest has been
devoted to the DKP equation because of its applicability to the particle and nuclear physics,
such as the study of the meson–nuclear interaction and deuteron-nucleus scattering. It has
been studied in the context of the QCD and in the scattering of nucleus with exact solutions
for some external potentials [15–19].

Unlike the Klein–Gordon and Dirac equations, the DKP equation has not been examined
in the view of the existence of the transmission resonance phenomenon. In this paper, we
are interested in solving the spatially one-dimensional DKP equation for the asymmetric form
of the Hulthen potential [20] and deriving the condition for the existence of the transmission
resonance. The Hulthen potential is extensively used in many parts of physics, such as nuclear
and particle physics, solid state physics and chemical physics [21]. It involves many class of
potentials used in physics, such as Coulomb, Cusp and Wood–Saxon potentials, with particular
approaches of the parameters defined within. It reduces to the usual Hulten potential for a = b

and q = q̃ = 1, to the symmetric and asymmetric Cusp potential for q = q̃ = 0 and the
Wood–Saxon potential for a = b and q = q̃ = −1. The general form of the one-dimensional
asymmetric Hulthen potential barrier is defined by

eA0 = V (x) = V0

[
θ(−x)

1

e−ax − q
+ θ(x)

1

ebx − q̃

]
, (1)

where V0 is the strength of the potential barrier, positive a, b, q and q̃ parameters define the
shape of the potential and θ(x) is the Heaviside step function. q and q̃ are both less than unity.
The shape of the asymmetric Hulthen potential is displayed in figure 1.

The structure of the paper will be as follows. In section 2, we exactly solve the DKP
equation for spin-1 sector for an asymmetric form of the Hulthen potential. In section 3,
we present the solutions of the scattering states in terms of the hypergeometric functions and
derive the condition for the existence of the transmission resonances. Section 4 is devoted for
the complete bound state solutions of the DKP equation for the asymmetric Hulthen potential
well. We give our final remarks in section 5.

2. Asymmetric Hulthen potential in the DKP equation

The relativistic DKP equation [22] describes the nature of the massive vector (spin-1) and
scalar (spin-0) bosons. Its covariant form in the presence of an external potential field is given
by (in natural units h̄ = c = 1)

[iβμ(∂μ + ieAμ) − m]�K(t,−→x ) = 0, (2)
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Figure 1. The shape of the asymmetric Hulthen potential for different values of the potential shape
parameters a and b, with V0 = 1, q = 0.6 and q̃ = 0.7.

where Aμ is the vector potential and m is the mass of the boson. The βμ matrices satisfy the
below relation:

βμβνβλ + βλβνβμ = gμνβλ + gλνβμ, (3)

with gμν = diag(+1,−1,−1,−1) metric tensor of the Minkowski spacetime. Beta matrices
satisfying the DKP algebra have three irreducible representations of dimensions 1, 5 and 10.
The wavefunction of the DKP equation, �K(t,−→x ), is 16-component and it remains invariant
under the local Lorentz transformations. An appropriate linear transformation that takes the
equation back to the its original form in the new co-ordinate system is acceptable for the
requirement of the relativistic invariance of the theory. For a Lorentz transformation [23]:
x ′μ = �μ

ν xν

� → � ′ = U (�)� (4)

U−1βμU = �μ
ν βν, (5)

and for the case of general infinitesimal transformations �μν = ημν + ωμν (ωμν = −ωνμ) the
infinitesimal Lorentz transformations are given as follows:

U = 1 + 1
2ωμνSμν, Sμν = [βμ, βν]. (6)

The particular spin-1 part of the DKP equation has been obtained [24, 25] from the quantization
of a classical model in which the beta matrices are given by

βμ = γ μ ⊗ I + I ⊗ γ μ, (7)

where γ μ are the standard Dirac matrices. In this model spin-1 particle is considered as a
particle system of two spin-1/2 particles with equal mass, instead of a single spin-1 particle.
This is the second quantization approach of Schrödinger to the problem. In that case the
wavefunction � in equation (2) can be written in the form

� = �K = �D ⊗ �D, (8)

where �K and �D are the wavefunctions of DKP and Dirac equations, respectively.
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For the (1 + 1)-dimensional case, the Dirac gamma matrices in equation (7) are replaced
[26] by the Pauli spin matrices σμ and the beta matrices are rewritten in the form

βμ = σμ ⊗ I + I ⊗ σμ, (9)

and the DKP equation for the spin-1 sector takes the following form:

[i(σμ ⊗ I + I ⊗ σμ)(∂μ + ieAμ) − m]�K = 0, (10)

where �T
K is given by

�T
K = (�1 �0 �0̃ �2).

We choose the representation of the Dirac gamma matrices as γ 0 = σ z, γ 1 = iσx . Then, the
following four coupled differential equations are obtained from equation (10):

[2 (∂0 + ieA0) + im] �1 + i(∂1 + ieA1)(�0 + �0̃) = 0

(∂1 + ieA1)(�1 + �2) + m�0 = 0

(∂1 + ieA1)(�1 + �2) + m�0̃ = 0

[−2 (∂0 + ieA0) + im] �2 + i(∂1 + ieA1)(�0 + �0̃) = 0.

(11)

After a simple algebra within these equations, a second-order differential equation is
obtained:

[(∂1 + ieA1)
2 − (−iE + ieA0)

2 − m̃2](χ1 + χ2) = 0, (12)

where �(t, x) = e−iEtχ(x), χT = (χ1 χ0 χ0̃ χ2) and m̃ = m
2 . Exact solutions of equation

(12) for the asymmetric Hulthen potential given by equation (1) can be obtained by defining
two new variables: y = qeax for x < 0 and z = q̃e−bx for x > 0.

First, we consider the x < 0 case. Then, equation (12) takes the following form:{
y2∂2

y + y∂y +

(
V0

aq

)2 (
y

1 − y

)2

+
E2 − m̃2

a2
− 2V0E

a2q

(
y

1 − y

)}
(χ1 + χ2) = 0. (13)

By setting χ1 (y) + χ2 (y) = yμ (1 − y)ε f (y), the above equation reduces to the
hypergeometric equation [27]:

y(1 − y)
d2f

dy2
+ [1 + 2μ − y (2μ + 2ε + 1)]

df

dy
+ (μ + ε + β) (μ + ε − β) f (y) = 0, (14)

where μ = i
√

E2−m̃2

a
, ε = 1+

√
1−4(

V0
aq

)2

2 and β =
√

m̃2−(E+ V0
q

)2

a
. The solution of equation (14) is

given in terms of hypergeometric functions [27]:

f (y) = A 2F1(μ + ε − β,μ + ε + β; 1 + 2μ; y)

+ By−2μ
2F1(−μ + ε − β,−μ + ε + β; 1 − 2μ; y). (15)

The left-hand side solutions are

(χ1 + χ2)L = Ayμ (1 − y)ε 2F1(μ + ε − β,μ + ε + β; 1 + 2μ; y)

+ By−μ (1 − y)ε 2F1(−μ + ε − β,−μ + ε + β; 1 − 2μ; y). (16)

Now we consider the solutions for x > 0. In that case equation (12) becomes{
z2∂2

z + z∂z +

(
V0

bq̃

)2 (
z

1 − z

)2

+
E2 − m̃2

b2
− 2V0E

b2q̃

(
z

1 − z

)}
(χ1 + χ2) = 0. (17)
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By setting χ1 (z) + χ2 (z) = zμ̃ (1 − z)−̃ε g (z), equation (17) gives the hypergeometric
equation

z(1 − z)
d2g

dz2
+ [1 + 2μ̃ − z(2μ̃ − 2̃ε + 1)]

dg

dz
+ (μ̃ − ε̃ + β̃)(μ̃ − ε̃ − β̃)g(z) = 0, (18)

where μ̃ = i
√

E2−m̃2

b
, ε̃ = −1+

√
1−4(

V0
bq̃

)2

2 and β̃ =
√

m̃2−(E+ V0
q̃

)2

b
.

Solution of this equation will be

g(z) = C 2F1(μ̃ − ε̃ − β̃, μ̃ − ε̃ + β̃; 1 + 2μ̃; z)

+ Dz−2μ̃
2F1(−μ̃ − ε̃ − β̃,−μ̃ − ε̃ + β̃; 1 − 2μ̃; z), (19)

and the right-hand side solutions are

(χ1 + χ2)R = Czμ̃(1 − z)−̃ε
2F1(μ̃ − ε̃ − β̃, μ̃ − ε̃ + β̃; 1 + 2μ̃; z)

+ Dz−μ̃(1 − z)−̃ε
2F1(−μ̃ − ε̃ − β̃,−μ̃ − ε̃ + β̃; 1 − 2μ̃; z). (20)

The solutions obtained so far are for the linear combination of the first and last components
of the wavefunction. The other components can be obtained with the help of the following
equations:

�0 = − 1

m
(∂1 + ieA1)(�1 + �2), (21)

(�1 − �2) = 2i

m
(∂0 + ieA0) (�1 + �2), (22)

d 2F1(a, b; c; x)

dx
= ab

c
2F1(a + 1, b + 1; c + 1; x). (23)

3. Scattering states

From now on, we can discuss the reflection and transmission through the potential barrier given
by equation (1) where V0 > 0. For the physical solutions of the system, we should ensure that
our solutions satisfy the appropriate boundary conditions. The asymmetric Hulthen potential
vanishes as x → −∞, thus the incoming wave should behave as a plane wave for x → −∞.
Taking into account that as x → −∞ then y → 0 and by considering the asymptotic behavior
of the hypergeometric functions [27] as t → 0 :

2F1(a, b; c; t) −→ 1, (24)

we obtain the complete solutions of the incoming wave and its asymptotic form for very large
values of x as follows:

�inc. = yμ (1 − y)ε ×

⎡⎢⎢⎢⎢⎢⎣

{
1
m

[E − V0
q

(
y

1−y

)
] + 1

2

}
Finc.

a
m

{[−μ+y(μ+ε)

1−y

]
Finc. +

[
β2−(μ+ε)2

1+2μ

]
yF̃inc.

}
a
m

{[−μ+y(μ+ε)

1−y

]
Finc. +

[
β2−(μ+ε)2

1+2μ

]
yF̃inc.

}{−1
m

[E − V0
q

(
y

1−y

)
] + 1

2

}
Finc.

⎤⎥⎥⎥⎥⎥⎦ (25)

�inc. −→ q ik/a eikx

⎡⎢⎢⎢⎢⎣
(

E
m

+ 1
2

)
−ik
m

−ik
m(−E

m
+ 1

2

)

⎤⎥⎥⎥⎥⎦ , (26)

5
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where we used the below definitions

Finc. = 2F1(μ + ε − β,μ + ε + β; 1 + 2μ; y)

F̃inc. = 2F1(μ + ε − β + 1, μ + ε + β + 1; 2 + 2μ; y)

k =
√

E2 − m̃2.

As it is seen from the asymptotic behavior, the incoming wave has the required momentum
direction.

The reflected wave can be written by replacing μ with −μ in the incoming wave. Then
we have the reflected wave and its asymptotic form for very large values of x as follows:

�ref. = y−μ (1 − y)ε ×

⎡⎢⎢⎢⎢⎢⎣

{
1
m

[E − V0
q

(
y

1−y

)
] + 1

2

}
Fref.

a
m

{[
μ+y(−μ+ε)

1−y

]
Fref. +

[
β2−(−μ+ε)2

1−2μ

]
yF̃ref.

}
a
m

{[
μ+y(−μ+ε)

1−y

]
Fref. +

[
β2−(−μ+ε)2

1−2μ

]
yF̃ref.

}{−1
m

[E − V0
q

(
y

1−y

)
] + 1

2

}
Fref.

⎤⎥⎥⎥⎥⎥⎦ , (27)

�ref. −→ q−ik/a e−ikx

⎡⎢⎢⎢⎢⎣
(

E
m

+ 1
2

)
ik
m

ik
m(−E

m
+ 1

2

)

⎤⎥⎥⎥⎥⎦ , (28)

where we used the definitions

Fref. = 2F1(−μ + ε − β,−μ + ε + β; 1 − 2μ; y)

F̃ref. = 2F1(−μ + ε − β + 1,−μ + ε + β + 1; 2 − 2μ; y).

Finally, the transmitted wave and its asymptotic form for very large values of x are obtained as

�trans. = zμ̃ (1 − z)−̃ε ×

⎡⎢⎢⎢⎢⎢⎣

{
1
m

[E − V0
q̃

(
z

1−z

)
] + 1

2

}
Ftrans.

b
m

{[−μ̃+z(μ̃+̃ε)

1−z

]
Ftrans. +

[−β̃2+(μ̃+̃ε)2

1−2μ̃

]
zF̃trans.

}
b
m

{[−μ̃+z(μ̃+̃ε)

1−z

]
Ftrans. +

[−β̃2+(μ̃+̃ε)2

1−2μ̃

]
zF̃trans.

}{−1
m

[E − V0
q̃

(
z

1−z

)
] + 1

2

}
Ftrans.

⎤⎥⎥⎥⎥⎥⎦, (29)

�trans. −→ q̃−ik/b eikx

⎡⎢⎢⎢⎢⎣
(

E
m

+ 1
2

)
−ik
m

−ik
m(−E

m
+ 1

2

)

⎤⎥⎥⎥⎥⎦ , (30)

where

Ftrans. = 2F1(−μ̃ − ε̃ − β̃,−μ̃ − ε̃ + β̃; 1 − 2μ̃; z)

F̃trans. = 2F1(−μ̃ − ε̃ − β̃ + 1,−μ̃ − ε̃ + β̃ + 1; 2 − 2μ̃; z).

We can discuss the transmission resonances in consideration of determining the reflection and
transmission coefficients. For this purpose we use the continuity of the DKP wavefunction at
x = 0:

N1�inc.(x = 0) + N2�ref.(x = 0) = N3�trans.(x = 0). (31)

6



J. Phys. A: Math. Theor. 43 (2010) 225204 K Sogut and A Havare

Table 1. Table for the constants defined in the calculations of T and R.

α1 = 1
m

[
E − V0

1−q

]
+ 1

2 β1 = 1
m

[
E − V0

1−q̃

]
+ 1

2

α0 = a

m

[−μ+q(μ+ε)

1−q

]
β0 = b

m

[−μ̃+̃q(μ̃+̃ε)

1−q̃

]
α̃0 = aq

m

[
β2−(μ+ε)2

1+2μ

]
β̃0 = bq̃

m

[−β̃2+(μ̃+̃ε)2

1−2μ̃

]
α2 = −1

m

[
E − V0

1−q

]
+ 1

2 β2 = −1
m

[
E − V0

1−q̃

]
+ 1

2

γ0 = a

m

[
μ+q(−μ+ε)

1−q

]
γ̃0 = aq

m

[
β2−(−μ+ε)2

1−2μ

]

The relationship between Ni coefficients can be computed with the help of the above condition.
Since the four-vector current density must be conserved between the negative infinity and the
positive infinity, the reflection and transmission coefficients can be determined by using the
conservation of the current density.

The four-vector current density for the DKP equation is given by jμ = �βμ� where
� = �† (

γ 0 ⊗ γ 0
)
. Thus, the reflection and transmission coefficients are defined in terms of

the incident, reflected and transmitted currents and can be computed by

T =
∣∣∣∣jtrans.

jinc.

∣∣∣∣ =
∣∣∣∣N3

N1

∣∣∣∣2

, (32)

R =
∣∣∣∣ jref.

jinc.

∣∣∣∣ =
∣∣∣∣N2

N1

∣∣∣∣2

. (33)

The continuity condition of the DKP wave at the boundary, at x = 0, gives

N3

N1
= qμ(1 − q)ε

q̃−μ̃(1 − q̃)−̃ε

×
{

Finc.(q)[γ0Fref.(q) + γ̃0F̃ref.(q)] − Fref.(q)[α0Finc.(q) + α̃0F̃inc.(q)]
β1

α1
Ftrans.(̃q)[γ0Fref.(q) + γ̃0F̃ref.(q)] − Fref.(q)[β0Ftrans.(̃q) + β̃0F̃trans.(̃q)]

}
,

N2

N1
= q2μ

Fref.(q)

[
N3

N1

q̃−μ̃(1 − q̃)−̃ε

qμ(1 − q)ε

β2

α2
Ftrans.(̃q) − Finc.(q)

]
, (34)

where the use of below definitions are made

Finc.(q) = 2F1(μ + ε − β,μ + ε + β; 1 + 2μ; q),

F̃inc.(q) = 2F1(μ + ε − β + 1, μ + ε + β + 1; 2 + 2μ; q),

Fref.(q) = 2F1(−μ + ε − β,−μ + ε + β; 1 − 2μ; q),

F̃ref.(q) = 2F1(−μ + ε − β + 1,−μ + ε + β + 1; 2 − 2μ; q),

Ftrans.(̃q) = 2F1(−μ̃ − ε̃ − β̃,−μ̃ − ε̃ + β̃; 1 − 2μ̃; q̃),

F̃trans.(̃q) = 2F1(−μ̃ − ε̃ − β̃ + 1,−μ̃ − ε̃ + β̃ + 1; 2 − 2μ̃; q̃).

The constants α, β and γ defined in the calculations of the R and T are listed in table 1. By
using equations (34) in equations (32) and (33) we can check whether the unitarity condition,
R + T = 1, is satisfied or not. We have done this by using a mathematical software package.
For example, if we take a = b = 0.7, q = q̃ = 0.8,m = 1 and V0 = 4, the R + T = 1
unitarity condition is certainly satisfied.

Now we can discuss the condition for the existence of the transmission resonances. The
condition for the transmission resonances to appear is equal to the set R = 0. Then, equaling
N2
N1

to zero we obtain the condition for the transmission resonances:

7
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Figure 2. Transmission coefficient versus energy for a = b = 0.7, q = q̃ = 0.8,m = 1 and
V0 = 4.
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Figure 3. Unitarity condition, R +T = 1, is displayed in the plot for parameters a = b = 0.7, q =
q̃ = 0.8,m = 1 and V0 = 4. Solid and dashed lines correspond to the T and R, respectively.

{Finc.(q)Ftrans.(̃q)Fref.(q)

[(
β2

α2
− β1

α1

)
γ0 − β2

α2
α0

]
+ Finc.(q)Ftrans.(̃q)F̃ref.(q)

(
β2

α2
− β1

α1

)
γ̃0

−Fref.(q)Ftrans.(̃q)F̃inc.(q)
β2

α2
α̃0 + Finc.(q)Fref.(q)F̃trans.(̃q)β̃0} = 0. (35)

Figures 1 and 3 explicitly show the existence of the transmission resonances and the unitarity
condition, respectively. It is interesting to discuss the transmission resonance phenomena
for the solutions of the DKP equation for the Hulthen potential. The dependence of the
transmission coefficient on the energy of the vector particle varies by different values of the q
and q̃ parameters. This can be determined numerically. Figure 4 shows how the transmission
coefficient depends on the energy of the particle. It is seen that the intensity and the widths of
the resonance peaks are sensitive to the value of q̃. As q̃ increases, resonance peaks become

8



J. Phys. A: Math. Theor. 43 (2010) 225204 K Sogut and A Havare

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0
T vs E

Figure 4. Transmission coefficient versus energy for a = b = 0.6,m = 1 and V0 = 4. The
solid line represents the case for q = q̃ = 0.7 and the dashed line corresponds to the case for
q = 0.7, q̃ = 0.8.

shorter and narrower. Figure 5 indicates that, although the shape parameters a and b take
different values, we still have transmission resonances as q = q̃. Resonance peaks appear at
smaller values of particle energy in cases a < b. Finally, figures 6 and 7 show the dependence
of the transmission resonances on the potential strength parameter V0. Increasing the q̃ value
leads to more transmission resonance peaks, in cases where the shape parameters have the
same values. In figure 7, it is seen that the same number of transmission resonance peaks
occur for varying a and b, whereas q and q̃ have equal values. The transmission resonance
peaks show a periodical behavior as the energy increases. Based on the figures, we can also
conclude that both symmetric and asymmetric Hulthen potentials are completely penetrable.
The outgoing wave is shifted by δ in its phase relative to the incoming wave which can be
defined in terms of the transmission coefficient by

N3

N1
=

√
T e−iδ. (36)

An analytical expression for the phase shift can be found as follows by using N3
N1

from
equation (34):

δ = −i ln

[√
T

N1

N3

]
. (37)

4. Bound states

In this section, we consider the solutions for bound states, |E| < m. In that case, the Hulthen
potential barrier becomes an attractive potential well for V0 < 0:

eA0 = V (x) = −V0

[
θ(−x)

1

e−ax − q
+ θ(x)

1

ebx − q̃

]
. (38)
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Figure 5. Transmission coefficient versus energy for q = q̃ = 0.8,m = 1 and V0 = 4. The solid
line is for a = 0.7, b = 0.5 and the dashed line is for a = 0.6, b = 0.8.
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Figure 6. Transmission coefficient versus potential strength for a = b = 0.7,m = 1 and E = 4.
The solid line is for q = q̃ = 0.5 and the dashed line is for q = 0.5 and q̃ = 0.9.

Considering equation (13) we see that the equation to be solved for the bound states for x < 0
is{

y2∂2
y + y∂y +

(−V0

aq

)2 (
y

1 − y

)2

+
E2 − m̃2

a2
+

2V0E

a2q

(
y

1 − y

)}
(χ1 + χ2) = 0. (39)

By setting χ1 (y) + χ2 (y) = yξ (1 − y)ε w (y), the above equation reduces to the
hypergeometric equation

y(1 − y)
d2w

dy2
+ [1 + 2ξ − y (2ξ + 2ε + 1)]

dw

dy
+ (ξ + ε + ν) (ξ + ε − ν) w(y) = 0, (40)

where ξ =
√

m̃2−E2

a
, ε = 1+

√
1−4(

V0
aq

)2

2 and ν =
√

m̃2−(E− V0
q

)2

a
.

10
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Figure 7. Transmission coefficient versus potential strength for q = q̃ = 0.9,m = 1 and E = 4.
The solid line is for a = b = 0.6 and the dashed line is for a = 0.6, b = 0.8.

The solution of equation (38) is given by the hypergeometric function as

w(y) = C1 2F1(ξ + ε − ν, ξ + ε + ν; 1 + 2ξ ; y)

+ C2y
−2ξ

2F1(−ξ + ε − ν,−ξ + ε + ν; 1 − 2ξ ; y). (41)

Then complete bound state solutions of the DKP equation for x < 0 are obtained as follows:

�L = yξ (1 − y)ε

⎡⎢⎢⎢⎢⎢⎣

{
1
m

[E + V0
q

(
y

1−y

)
] + 1

2

}
FL

a
m

{[−ξ+y(ξ+ε)

1−y

]
FL +

[
ν2−(ξ+ε)2

1+2ξ

]
yF̃L

}
a
m

{[−ξ+y(ξ+ε)

1−y

]
FL +

[
ν2−(ξ+ε)2

1+2ξ

]
yF̃L

}{−1
m

[E + V0
q

(
y

1−y

)
] + 1

2

}
FL

⎤⎥⎥⎥⎥⎥⎦ , (42)

where

FL = 2F1(ξ + ε − ν, ξ + ε + ν; 1 + 2ξ ; y)

F̃L = 2F1(ξ + ε − ν + 1, ξ + ε + ν + 1; 2 + 2ξ ; y).

Next, we study the bound state solutions of DKP equation for x > 0. Equation (17) takes the
following form:{

z2∂2
z + z∂z +

(−V0

bq̃

)2 (
z

1 − z

)2

+
E2 − m̃2

b2
+

2V0E

b2q̃

(
z

1 − z

)}
(χ1 + χ2) = 0 (43)

and setting χ1 (z)+χ2 (z) = zξ̃ (1 − z)−̃ε s (z), equation (41) gives the hypergeometric equation

z(1 − z)
d2s

dz2
+ [1 + 2̃ξ − z(2̃ξ − 2̃ε + 1)]

ds

dz
+ (̃ξ − ε̃ + ν̃)(̃ξ − ε̃ − ν̃)s(z) = 0, (44)

where ξ̃ =
√

m̃2−E2

b
, ε̃ = 1+

√
1−4(

V0
bq̃

)2

2 and ν̃ =
√

m̃2−(E− V0
q̃

)2

b
.

The solution of this equation is

s(z) = C3 2F1(μ̃ − ε̃ − β̃, μ̃ − ε̃ + β̃; 1 + 2μ̃; z)

+ C4z
−2μ̃

2F1(−μ̃ − ε̃ − β̃,−μ̃ − ε̃ + β̃; 1 − 2μ̃; z). (45)

11
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Figure 8. The dependence of the real part of the first bound state energy on the potential strength
for a = 0.4, b = 0.5,m = 1, q = 0.1 and q̃ = 0.15.

Then, the bound state solutions of the DKP equation for x > 0 are

�R = zξ̃ (1 − z)−̃ε

⎡⎢⎢⎢⎢⎢⎢⎣

{
1
m

[E + V0
q̃

(
z

1−z

)
] + 1

2

}
FR

b
m

{[−ξ̃+z(̃ξ +̃ε)

1−z

]
FR +

[−ν̃2+(̃ξ +̃ε)2

1−2̃ξ

]
zF̃R

}
b
m

{[−ξ̃+z(̃ξ +̃ε)

1−z

]
FR +

[−ν̃2+(̃ξ +̃ε)2

1−2̃ξ

]
zF̃R

}{−1
m

[E + V0
q̃

(
z

1−z

)
] + 1

2

}
FR

⎤⎥⎥⎥⎥⎥⎥⎦ , (46)

where

FR = 2F1(−ξ̃ − ε̃ − ν̃,−ξ̃ − ε̃ + ν̃; 1 − 2̃ξ ; z)

F̃R = 2F1(−ξ̃ − ε̃ − ν̃ + 1,−ξ̃ − ε̃ + ν̃ + 1; 2 − 2̃ξ ; z).

The bound state energy eigenvalues are found by requiring that the right- and left-hand side
wavefunctions must be matched at x = 0:[

1

m

(
E +

V0

1 − q̃

)
+

1

2

]
FR(̃q)

[
a

m

(−ξ + q(ξ + ε)

1 − q

)
FL(q) +

aq

m

(
ν2 − (ξ + ε)2

1 + 2ξ

)
F̃L(q)

]
−

[
1

m

(
E +

V0

1 − q

)
+

1

2

]
FL(q)

[
b

m

(−ξ̃ + q̃ (̃ξ + ε̃)

1 − q̃

)
FR(̃q)

+
bq̃

m

(−ν̃2 + (̃ξ + ε̃)2

1 − 2̃ξ

)
F̃R(̃q)

]
= 0, (47)

where below definitions are made:

FL(q) = 2F1(ξ + ε − ν, ξ + ε + ν; 1 + 2ξ ; q)

F̃L(q) = 2F1(ξ + ε − ν + 1, ξ + ε + ν + 1; 2 + 2ξ ; q)

FR(̃q) = 2F1(−ξ̃ − ε̃ − ν̃,−ξ̃ − ε̃ + ν̃; 1 − 2̃ξ ; q̃)

F̃R(̃q) = 2F1(−ξ̃ − ε̃ − ν̃ + 1,−ξ̃ − ε̃ + ν̃ + 1; 2 − 2̃ξ ; q̃).

Using this equation, one can determine the energy eigenvalues of the bound states numerically.
Following this approach, we illustrate the relation between energy and the potential strength in
figure 8. If the potential well strengthens, then the bound state energy of the system decreases
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and as this energy becomes equal to the negative mass of the particle the bound states merge
with the negative energy continuum. In that case, the potential takes its critical value and is
called the supercritical potential [6]. The value of the supercritical potential can be obtained
by taking E → −m in equation (45), which leads ξ → 0 and ξ̃ → 0. The critical potential is
found to be V = V0 = 0.268 019.

5. Conclusion

We obtained the solutions of the DKP equation for the general form of the asymmetric Hulthen
potential which includes various types of the physical potentials. Quantum effects related to
these potentials are widely discussed in the literature for Klein–Gordon and Dirac equations.
The DKP equation can be said to be less studied compared to them. Especially, transmission
resonance phenomena in the DKP equation have not been examined yet.

In this study, we solved exactly the DKP equation for asymmetric Hulthen potential. The
main concern of this study is to verify that whether the transmission resonance phenomena in
the DKP equation occur only for the symmetric potentials, as suggested for the Dirac equation
in the [14], or not. For this purpose we obtained scattering and bound state solutions and the
condition for the existence of the transmission resonances in the DKP equation. We showed that
these phenomena occur not only for symmetric potentials but also for the asymmetric potentials
as displayed in the figure 7. The asymmetry of the Hulthen potential results from different
values of a, b, q and q̃ shape parameters. If we set a = b and q = q̃, then the transmission
resonances occur periodically. For unequal values of a and b, the periodical occurrence of
the transmission resonances, as displayed in figure 2, yields a sequential occurrence behavior,
as in the figure 5. In this figure, the first peak corresponds to a transmission resonance while
the second peak has an intensity less than unity. These results show that the transmission
resonances appearing for different external potentials depend on their forms. Therefore, there
can be no generalization for the DKP equation that requires the transmission coefficient has
to be always less than unity for any asymmetric potential. We analyzed the dependence of the
transmission coefficient on the energy of the particle and the strength of the potential barrier.
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